3.733 \(\int \frac{x^3}{\sqrt{a+b x} \sqrt{c+d x}} \, dx\)

Optimal. Leaf size=169 \[ \frac{\sqrt{a+b x} \sqrt{c+d x} \left (15 a^2 d^2-10 b d x (a d+b c)+14 a b c d+15 b^2 c^2\right )}{24 b^3 d^3}-\frac{(a d+b c) \left (5 a^2 d^2-2 a b c d+5 b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{8 b^{7/2} d^{7/2}}+\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d} \]

[Out]

(x^2*Sqrt[a + b*x]*Sqrt[c + d*x])/(3*b*d) + (Sqrt[a + b*x]*Sqrt[c + d*x]*(15*b^2*c^2 + 14*a*b*c*d + 15*a^2*d^2
 - 10*b*d*(b*c + a*d)*x))/(24*b^3*d^3) - ((b*c + a*d)*(5*b^2*c^2 - 2*a*b*c*d + 5*a^2*d^2)*ArcTanh[(Sqrt[d]*Sqr
t[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(8*b^(7/2)*d^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.114809, antiderivative size = 169, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {100, 147, 63, 217, 206} \[ \frac{\sqrt{a+b x} \sqrt{c+d x} \left (15 a^2 d^2-10 b d x (a d+b c)+14 a b c d+15 b^2 c^2\right )}{24 b^3 d^3}-\frac{(a d+b c) \left (5 a^2 d^2-2 a b c d+5 b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{8 b^{7/2} d^{7/2}}+\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(Sqrt[a + b*x]*Sqrt[c + d*x]),x]

[Out]

(x^2*Sqrt[a + b*x]*Sqrt[c + d*x])/(3*b*d) + (Sqrt[a + b*x]*Sqrt[c + d*x]*(15*b^2*c^2 + 14*a*b*c*d + 15*a^2*d^2
 - 10*b*d*(b*c + a*d)*x))/(24*b^3*d^3) - ((b*c + a*d)*(5*b^2*c^2 - 2*a*b*c*d + 5*a^2*d^2)*ArcTanh[(Sqrt[d]*Sqr
t[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(8*b^(7/2)*d^(7/2))

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{a+b x} \sqrt{c+d x}} \, dx &=\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d}+\frac{\int \frac{x \left (-2 a c-\frac{5}{2} (b c+a d) x\right )}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{3 b d}\\ &=\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d}+\frac{\sqrt{a+b x} \sqrt{c+d x} \left (15 b^2 c^2+14 a b c d+15 a^2 d^2-10 b d (b c+a d) x\right )}{24 b^3 d^3}-\frac{\left ((b c+a d) \left (5 b^2 c^2-2 a b c d+5 a^2 d^2\right )\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{16 b^3 d^3}\\ &=\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d}+\frac{\sqrt{a+b x} \sqrt{c+d x} \left (15 b^2 c^2+14 a b c d+15 a^2 d^2-10 b d (b c+a d) x\right )}{24 b^3 d^3}-\frac{\left ((b c+a d) \left (5 b^2 c^2-2 a b c d+5 a^2 d^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{8 b^4 d^3}\\ &=\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d}+\frac{\sqrt{a+b x} \sqrt{c+d x} \left (15 b^2 c^2+14 a b c d+15 a^2 d^2-10 b d (b c+a d) x\right )}{24 b^3 d^3}-\frac{\left ((b c+a d) \left (5 b^2 c^2-2 a b c d+5 a^2 d^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{8 b^4 d^3}\\ &=\frac{x^2 \sqrt{a+b x} \sqrt{c+d x}}{3 b d}+\frac{\sqrt{a+b x} \sqrt{c+d x} \left (15 b^2 c^2+14 a b c d+15 a^2 d^2-10 b d (b c+a d) x\right )}{24 b^3 d^3}-\frac{(b c+a d) \left (5 b^2 c^2-2 a b c d+5 a^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{8 b^{7/2} d^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.745289, size = 188, normalized size = 1.11 \[ \frac{b \sqrt{d} \sqrt{a+b x} (c+d x) \left (15 a^2 d^2+2 a b d (7 c-5 d x)+b^2 \left (15 c^2-10 c d x+8 d^2 x^2\right )\right )-3 \sqrt{b c-a d} \left (3 a^2 b c d^2+5 a^3 d^3+3 a b^2 c^2 d+5 b^3 c^3\right ) \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{24 b^4 d^{7/2} \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(Sqrt[a + b*x]*Sqrt[c + d*x]),x]

[Out]

(b*Sqrt[d]*Sqrt[a + b*x]*(c + d*x)*(15*a^2*d^2 + 2*a*b*d*(7*c - 5*d*x) + b^2*(15*c^2 - 10*c*d*x + 8*d^2*x^2))
- 3*Sqrt[b*c - a*d]*(5*b^3*c^3 + 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 + 5*a^3*d^3)*Sqrt[(b*(c + d*x))/(b*c - a*d)]*Ar
cSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/(24*b^4*d^(7/2)*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.023, size = 395, normalized size = 2.3 \begin{align*} -{\frac{1}{48\,{b}^{3}{d}^{3}} \left ( -16\,{x}^{2}{b}^{2}{d}^{2}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+15\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){a}^{3}{d}^{3}+9\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){a}^{2}bc{d}^{2}+9\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) a{b}^{2}{c}^{2}d+15\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){b}^{3}{c}^{3}+20\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}xab{d}^{2}+20\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}x{b}^{2}cd-30\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}{a}^{2}{d}^{2}-28\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}abcd-30\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }{b}^{2}{c}^{2} \right ) \sqrt{bx+a}\sqrt{dx+c}{\frac{1}{\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x+a)^(1/2)/(d*x+c)^(1/2),x)

[Out]

-1/48*(-16*x^2*b^2*d^2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+15*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^
(1/2)+a*d+b*c)/(b*d)^(1/2))*a^3*d^3+9*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/
2))*a^2*b*c*d^2+9*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a*b^2*c^2*d+15*l
n(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b^3*c^3+20*((b*x+a)*(d*x+c))^(1/2)*
(b*d)^(1/2)*x*a*b*d^2+20*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*x*b^2*c*d-30*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*
a^2*d^2-28*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*a*b*c*d-30*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*b^2*c^2)*(b*x+a)
^(1/2)*(d*x+c)^(1/2)/d^3/b^3/(b*d)^(1/2)/((b*x+a)*(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.70651, size = 933, normalized size = 5.52 \begin{align*} \left [\frac{3 \,{\left (5 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \,{\left (8 \, b^{3} d^{3} x^{2} + 15 \, b^{3} c^{2} d + 14 \, a b^{2} c d^{2} + 15 \, a^{2} b d^{3} - 10 \,{\left (b^{3} c d^{2} + a b^{2} d^{3}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{96 \, b^{4} d^{4}}, \frac{3 \,{\left (5 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} d^{2} x^{2} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) + 2 \,{\left (8 \, b^{3} d^{3} x^{2} + 15 \, b^{3} c^{2} d + 14 \, a b^{2} c d^{2} + 15 \, a^{2} b d^{3} - 10 \,{\left (b^{3} c d^{2} + a b^{2} d^{3}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{48 \, b^{4} d^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/96*(3*(5*b^3*c^3 + 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 + 5*a^3*d^3)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b
*c*d + a^2*d^2 - 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + 4*
(8*b^3*d^3*x^2 + 15*b^3*c^2*d + 14*a*b^2*c*d^2 + 15*a^2*b*d^3 - 10*(b^3*c*d^2 + a*b^2*d^3)*x)*sqrt(b*x + a)*sq
rt(d*x + c))/(b^4*d^4), 1/48*(3*(5*b^3*c^3 + 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 + 5*a^3*d^3)*sqrt(-b*d)*arctan(1/2*
(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x))
+ 2*(8*b^3*d^3*x^2 + 15*b^3*c^2*d + 14*a*b^2*c*d^2 + 15*a^2*b*d^3 - 10*(b^3*c*d^2 + a*b^2*d^3)*x)*sqrt(b*x + a
)*sqrt(d*x + c))/(b^4*d^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{a + b x} \sqrt{c + d x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x+a)**(1/2)/(d*x+c)**(1/2),x)

[Out]

Integral(x**3/(sqrt(a + b*x)*sqrt(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.27297, size = 290, normalized size = 1.72 \begin{align*} \frac{{\left (\sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}{\left (2 \,{\left (b x + a\right )}{\left (\frac{4 \,{\left (b x + a\right )}}{b^{4} d} - \frac{5 \, b^{12} c d^{3} + 13 \, a b^{11} d^{4}}{b^{15} d^{5}}\right )} + \frac{3 \,{\left (5 \, b^{13} c^{2} d^{2} + 8 \, a b^{12} c d^{3} + 11 \, a^{2} b^{11} d^{4}\right )}}{b^{15} d^{5}}\right )} + \frac{3 \,{\left (5 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d} b^{3} d^{3}}\right )} b}{24 \,{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

1/24*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)*(4*(b*x + a)/(b^4*d) - (5*b^12*c*d^3 + 13
*a*b^11*d^4)/(b^15*d^5)) + 3*(5*b^13*c^2*d^2 + 8*a*b^12*c*d^3 + 11*a^2*b^11*d^4)/(b^15*d^5)) + 3*(5*b^3*c^3 +
3*a*b^2*c^2*d + 3*a^2*b*c*d^2 + 5*a^3*d^3)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b
*d)))/(sqrt(b*d)*b^3*d^3))*b/abs(b)